Исторические задачи, в которых обнаруживается арифметическая прогрессия
Решение: Если х – число яблок, собранных женщиной в саду, то первому стражнику досталось х/2 яблок, второй получил х/4 яблок, третий – х/8 яблок и четвертый – х/16 яблок. Так как х/16 = 10, то х = 160. Ответ: Женщина собрала в саду 160 яблок.
Задача 2. У семи лиц по семи кошек; каждая кошка съедает по семи мышей, каждая мышь съедает по семи колосьев, из каждого колоса может вырасти по семь мер ячменя. Как велики числа этого ряда и их сумма?»
Решение: Людей всего 7, кошек 72 = 49, они съедают всего 73 = 343 мыши, которые съедают всего
74 = 2401 колосьев, из них вырастает 75 = 16807 мер ячменя, в сумме эти числа дают 19608.
С точки зрения геометрической прогрессии имеем:
b1 =7
q =7
n=5
S= 
Задача 3. ( Из сборник английского ученого и богослова, советника и приближенного Карла Великого, Алкуина. )
Два человека купили на 100 сольдо свиней и платили за каждые 5 штук по два сольдо. Свиней они разделили, продали опять каждые пять штук по 2 сольдо и при этом получили прибыль. Как это могло случиться?
Решение: Поступили так: на 100 сольдо было куплено 250 свиней; их разделили на два равных стада по 125 свиней в каждом; далее отдавали из первого стада по 2 и из второго по 3 за один сольдо, за 120 свиней первого стада получили 60 сольдо, за 120 свиней второго стада - 40 сольдо и по 5 свиней каждого стада остаются в качестве прибыли.
Задача 4. Эта задача из старинного русского учебника математики, носящего странное заглавие: «Полный курс чистой математики, сочиненный Артиллерии Шкык-Юнкером и Математики партикулярным Учителем Ефимом Войтяховским в пользу и употребление юношества и упражняющихся в Математике» (1795).
Служившему воину дано вознаграждение: за первую рану 1 копейку, за другую - 2 копейки, за третью - 4 копейки и т. д. По исчислению воин получил вознаграждение в сумме 655 рублей 35 копеек. Спрашивается число его ран.
Решение: в1=1, в2=2, в3=4
Sn=655, 35
q=2, Sn=2n-1=65535
2n=65536
n=16
Задача 5. Известна интересная история о знаменитом немецком математике К. Гауссе (1777 – 1855), который еще в детстве обнаружил выдающиеся способности к математике. Учитель предложил учащимся сложить все натуральные числа от 1 до 100. Маленький Гаусс решил эту задачу за одну минуту, сообразив, что суммы 1+100, 2+99 и т.д равны, он умножил 101 на 50, т.е. на число таких сумм. Иначе говоря, он заметил закономерность, присущую арифметическим прогрессиям.
Задача очень непроста:
Как сделать, чтобы быстроОт единицы и до ста
Сложить в уме все числа?
Пять первых связок изучи.
Найдешь к решению ключи!
1+100? 2+99? 3+98?
4+97? 5+96?
Давным-давно один мудрец сказал,
Что прежде надо
Связать начало и конец
У численного ряда.
Комментарии
Отправить комментарий